ON BRIESKORN'S THEOREM

BY

V. HINICH

Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel

ABSTRACT

A cohomological proof of Brieskorn's theorem describing the singularity of the nilpotent cone of a complex simple Lie algebra in a subregular point, is given.

1. Introduction

Let G be a complex simple algebraic group with the Lie algebra \mathfrak{g} . Let \mathcal{N} denote the nilpotent cone of \mathfrak{g} .

It is well-known that \mathcal{N} admits an open G-orbit \mathcal{O}_{reg} (the regular nilpotent orbit of \mathfrak{g}) and that the complement $\mathcal{N} - \mathcal{O}_{reg}$ has codimension two in \mathcal{N} . An element $x \in \mathcal{N}$ is called **subregular** if it generates an orbit of codimension two in \mathcal{N} . The orbit of a subregular element is also called subregular. The singularity of \mathcal{N} in a subregular point is essentially two-dimensional. The result of E. Brieskorn (cf. [B2]) claims that this singularity is a rational double point whose Dynkin graph coincides with that of the Lie algebra \mathfrak{g} when the latter is of type A_n, D_n or E_6-E_8 .

In his original proof [B2] Brieskorn calculates the equations which give singularities in subregular points and compares them with the known equations for rational double points. Slodowy in [S1] reproves the result differently.

First of all, Slodowy proves that the nilpotent cone is normal in subregular points. (The result is due to Kostant, see [K], Th. 0.8.) After that, a cohomological calculation (apparently due to P. Deligne) shows that all self-intersection

Received March 17, 1991 and in revised form June 3, 1991

indices of the components of the exceptional divisor for a resolution of the singularity, are always equal to -2. Finally, the intersections of different components of the exceptional divisor are determined using a theorem of Tits (cf. [St], pp. 147–148).

In this note we calculate the intersection indices by purely cohomological methods. This gives a more conceptual explanation of the coincidence of Cartan matrices describing simple Lie algebras and their subregular singularities. Moreover, our calculation provides a proof of Tits' theorem *loc. cit.* which needs no caseby-case analysis. As a by-product we obtain that subregular orbits are unique (see [St], Th.1, p. 145).

We wish to thank A. Joseph and V. Berkovich for their helpful comments and suggestions.

2. Desingularizations

It is pleasant to be able to start with a nice desingularization [St], p. 129

In (2.1) we describe a desingularization of the nilpotent cone \mathcal{N} due to T. Springer, [Sp]. An appropriate base change (cf. (2.2)) gives a desingularization for the rational double point in question. All the constructions here are well-known (see [S1]).

We shall equally use the notations ${}^{g}x = x^{g^{-1}}$ for the result of the adjoint action of $g \in G$ on $x \in \mathfrak{g}$

(2.1) Fix a Borel subgroup $B \subseteq G$, denote by **b** the corresponding Borel subalgebra of **g** and let **n** be its nilradical. The tangent space to the flag variety G/B in a point gB identifies with g/gb and so the corresponding cotangent space identifies with gn. Let $X = T^*(G/B)$ be the cotangent bundle of G/B. This can be considered as a sub-bundle of the trivial bundle $G/B \times g$ and so the composition

$$\pi: X \to G/B \times \mathfrak{g} \stackrel{pr_2}{\to} \mathfrak{g}$$

is defined. Its image coincides with $\bigcup {}^{g}\mathfrak{n} = \mathcal{N}.$

THEOREM ([Sp]): The map $\pi: X \to \mathcal{N}$ constructed above is a desingularization.

(2.2) Let now $x \in \mathcal{N}$ be a subregular element and let $T \subseteq \mathfrak{g}$ be a transverse slice for \mathfrak{g} in x. Then $T \cap \mathcal{N}$ is two-dimensional having an isolated singularity in x and we choose T so that x is the only point of $T \cap \mathcal{N}$ not belonging to \mathcal{O}_{reg} . The scheme-theoretic inverse image $S = \pi^{-1}(T) \subseteq X$ is a desingularization for $T \cap \mathcal{N}$.

We are now able to formulate Brieskorn's theorem in a more general form proposed by P. Slodowy (cf. [Sl], 6.4).

THEOREM: The surface $T \cap N$ has a rational double point in x. If the Lie algebra g has a homogeneous Dynkin graph then the singularity in x is described by the same graph. For the non-homogeneous case the correspondence is described by the table below.

Type of	g	Singularity
B_n		A_{2n-1}
C_n		D_{n+1}
F_4		E_6
G_2		D_4

3. Subregular Elements in n

We fix a nilpotent element $x \in \mathcal{N}$ and recall that the fixed point variety of x is defined as

$$\mathcal{B}_{\boldsymbol{x}} = \{ gB | \boldsymbol{x}^{\boldsymbol{g}} \in \mathfrak{n} \}.$$

Consider the following diagram

$$\begin{array}{c} G \xrightarrow{\mathbf{p}} G/B \\ g \downarrow \\ G_{\mathbf{z}} \end{array}$$

with $p(g) = gB, q(g) = x^g$.

One has $p^{-1}(\mathcal{B}_x) = q^{-1}({}^G x \cap \mathfrak{n})$. It is easy to see that qp^{-1} and pq^{-1} establish a one-to-one correspondence (Spaltenstein correspondence) between

V. HINICH

irreducible components of ${}^{G}x \cap \mathfrak{n}$ and $A_x (= \operatorname{Stab}_G(x)/\operatorname{Stab}_G^o(x))$ -orbits on the set of irreducible components of \mathcal{B}_x — see [Spa].

Let now x be subregular. Then the components of $^{G}x \cap \mathfrak{n}$ have dimension

$$\dim \mathcal{B}_x + \dim B - \dim \operatorname{Stab}_G x = \dim \mathfrak{n} + \dim \mathcal{B}_x - 2 = \dim \mathfrak{n} - 1.$$

These components are all B-stable by the construction and it is well-known that n admits a dense B-orbit — this is the set $\mathcal{O}_{reg} \cap n$ of regular elements in n. So the only candidates for the role of the components of ${}^Gx\cap n$ are (open subsets of) the nilradicals \mathfrak{m}_{α} of the minimal parabolic subalgebras \mathfrak{p}_{α} . On the other hand, Richardson's theorem [R], Prop.4, claims that ${}^G\mathfrak{m}_{\alpha}$ is a closed irreducible subset of codimension two in \mathcal{N} , and so it admits an open orbit of the same dimension. Thus all \mathfrak{m}_{α} appear eventually as the closures of components of ${}^Gx\cap n$ with some subregular element x. A subregular orbit Gx which is dense in a fixed \mathfrak{m}_{α} is obviously unique.

We shall need the following lemma which is a simple part of Tits' result [St], pp. 147–148.

LEMMA: (a) Every irreducible component of \mathcal{B}_x has a form gP_{α}/B for some $g \in G$ and a simple root α .

(b) Different components of \mathcal{B}_x corresponding to the same simple root α do not meet; those corresponding to different simple roots either don't meet or meet transversally in one point.

Proof: (a) Let C be a component of \mathcal{B}_x and let $\mathfrak{m}_{\alpha} \cap^G x$ be the component of $\mathfrak{m} \cap^G x$ corresponding to C. Since $\mathfrak{m}_{\alpha} \cap^G x$ is P_{α} -invariant, its pre-image $q^{-1}(\mathfrak{m}_{\alpha} \cap^G x) \subseteq G$ is invariant under the right action of P_{α} . Thus the same is true for $C \subseteq G/B$ and, since C is one-dimensional, the only possibility for C is to be the image of gP_{α} .

(b) The first part of the claim immediately follows from (a). If two components $gP_{\alpha}/B, hP_{\beta}/B$ ($\alpha \neq \beta$) meet in a point, one can suppose without loss of generality that g = h = 1 and that the intersection point is $1 \cdot B$. This is the only intersection point since $P_{\alpha} \cap P_{\beta} = B$ and the curves meet transversally since their tangent spaces are different.

The lemma is proven.

4. Projective Lines on a Variety

(4.1) TYPE OF A LINE. Let X be a complex algebraic variety. We call a **projective line on** X a closed embedding $i : \mathbb{P}^1 \longrightarrow X$. The type of the projective line is defined as follows.

Consider the induced homorphism of cohomology algebras

$$i^*: H^{\cdot}(X, \mathbb{Z}) \longrightarrow H^{\cdot}(\mathbb{P}^1, \mathbb{Z}).$$

The cohomology of the projective line is well-known: one has $H^{\cdot}(\mathbf{P}^1, \mathbf{Z}) = \mathbf{Z}[x]/(x^2)$ where x has degree 2 and it is the class of the linear bundle $\mathcal{O}(1)$. So the ring homomorphism i^* defines (and is uniquely defined by) a Z-homomorphism $H^2(X, \mathbb{Z}) \longrightarrow \mathbb{Z}$.

Definition: The type of $i: \mathbb{P}^1 \longrightarrow X$ is the element of $H^2(X, \mathbb{Z})^*$ defined above.

(4.2) INTERSECTION WITH DIVISORS. Let now X be non-singular and let D be a divisor on X. Suppose as in (4.1) we are given a curve $i : \mathbb{P}^1 \longrightarrow X$. The intersection index $(i, D)_X$ can be defined as the degree of the invertible sheaf $i^*(\mathcal{L}(D))$ on \mathbb{P}^1 . In other words, if we denote by cl(D) the cohomology class of the divisor D (or, equivalently, of the invertible sheaf $\mathcal{L}(D)$) in $H^2(X,\mathbb{Z})$, then we have an obvious formula

$$(i,D)_X = \langle \text{ type } (i), \text{ cl } (D) \rangle$$

where \langle , \rangle is the canonical pairing.

(4.3) A CALCULATION FOR THE FLAG VARIETY. Let now X = G/B be a flag variety. Fix a simple root $\alpha \in \Delta$ and consider the line $i_{\alpha} : P_{\alpha}/B \longrightarrow G/B$. Recall that $H^2(G/B, \mathbb{Z}) = \mathfrak{h}_{\mathbb{Z}}^*$ in order that the class of a linear bundle \mathcal{L}_{λ} corresponding to the character $e^{\lambda} : B \longrightarrow \mathbb{C}^*$ is exactly λ .

LEMMA: The type of i_{α} is $-\alpha^{\vee} \in \mathfrak{h}_{\mathbb{Z}}$.

Proof: The category of G-linear bundles over G/B is equivalent to the category of one-dimensional B-modules. The inverse image functor from the category of linear bundles over G/B to the category of linear bundles over $\mathbb{P}^1 = SL_2/B_2$ $(B_2$ being the corresponding Borel) is expressed in these terms as the forgetful functor from the category of B-modules to that of B_2 -modules. In other words, the inverse image functor takes a character $\lambda \in \mathfrak{h}^*_{\mathbf{Z}}$ to its restriction $\lambda \mid_{\mathbf{C}\alpha^{\vee}}$. Recall

V. HINICH

that the line bundle over SL_2/B_2 corresponding to a character $\lambda : \mathbb{C}\alpha^{\vee} \longrightarrow \mathbb{C}$, is isomorphic to $\mathcal{O}(n)$ where $n = -\langle \alpha^{\vee}, \lambda \rangle$ which proves exactly what we need.

5. Cartan Matrix in $H^{\cdot}(T^*(G/B))$

(5.1). We use here the notations of Sections 2-4. So, $S = \pi^{-1}(T)$ is a desingularization of $T \cap \mathcal{N}$ and $\pi^{-1}(x)$ is the corresponding exceptional divisor. The natural projection $\nu : X = T^*(G/B) \longrightarrow G/B$ identifies the exceptional divisor with the fixed point variety \mathcal{B}_x .

(5.2). Consider the following set of divisors D_{α} in $X = T^*(G/B)$ indexed by the simple roots of \mathfrak{g} with respect to \mathfrak{b} :

$$D_{\alpha} = G \times^B \mathfrak{m}_{\alpha} \subseteq G \times^B \mathfrak{n} = T^*(G/B).$$

Note that $\mathcal{L}(D_{\alpha}) = \nu^* \mathcal{L}_{\alpha}$ and so the following result immediately follows from Lemma (4.3).

PROPOSITION: Let C be a component of $\pi^{-1}(x)$ corresponding to a simple root α (see Section 3). Then $(C, D_{\beta})_{X} = -\langle \alpha^{\vee}, \beta \rangle$.

We wish to deduce from this the intersection matrix of the components of the exceptional divisor.

(5.3). The connection between the two Cartan matrices results from the following

LEMMA: Let $j: S \longrightarrow X$ be the embedding map. Then $j^*(D_{\alpha})$ is the sum of the components of $\pi^{-1}(x)$ corresponding to α .

Proof: Note that (as a set of closed points) $\cup D_{\alpha} = \pi^{-1}(\mathcal{N} - \mathcal{O}_{reg})$. Thus

$$(\cup D_{\alpha}) \cap S = \pi^{-1}((\mathcal{N} - \mathcal{O}_{\mathrm{reg}}) \cap T) = \pi^{-1}(x).$$

So

$$D_{\alpha} \cap S = D_{\alpha} \cap \pi^{-1}(x).$$

The image of the latter in G/B is exactly $\{gB \mid x^g \in \mathfrak{m}_{\alpha}\}$.

Thus it is clear at least that $j^*(D_\alpha) = \sum n_i C_i, n_i \ge 1$, the sum being taken over the components corresponding to α .

To prove that $n_i = 1$ we shall reproduce the calculation of [SI] which shows that $(C, C)_S = -2$ for any component C. Here it is.

One knows that $(C, C)_S = \deg_C(N_{C/S})$ where $N_{C/S}$ denotes the normal bundle of C in S. Since $S = \pi^{-1}(T)$ one has by [EGA] IV 17.13.2 that $N_{S/X} = (\pi_{|S})^* N_{T/g}$ which is trivial for a sufficiently small T. So $(C, C)_S = \deg_C(N_{C/X})$. The embedding $i: C \longrightarrow X$ induces a short exact sequence

$$0 \longrightarrow T_C \longrightarrow i^*T_X \longrightarrow N_{C/X} \longrightarrow 0$$

 T_C (resp. T_X) being the tangent bundle of C (resp. X). Since the tangent bundle of X is trivial, one obtains finally $(C, C)_S = -\deg(T_C) = -2$.

Finally, by Lemma 3 different components C, C' corresponding to the same simple root α do not meet. So, using Proposition (5.2) for a component C_i corresponding to the simple root α , one has $-2 = (C_i, D_\alpha)_X = n_i(C_i, C_i)_S = -2n_i$ so $n_i = 1$ as was claimed.

6. Final

Proposition (5.2) and Lemma (5.3) determine the intersection matrix of the exceptional divisor. In fact, Lemma 3 asserts that any two different components have intersection index at most one and then by Section 5 any component of type α^{\vee} (note: the standard name for such a component is **the line of type** α !) meets exactly $\langle \alpha^{\vee}, \beta \rangle$ components of type β^{\vee} . Take any component of the exceptional divisor, say, of type α^{\vee} . We see that for any simple root β not orthogonal to α the exceptional divisor contains also components of type β^{\vee} . Thus the exceptional divisor contains the components corresponding to all simple roots. This proves that the intersection matrix of the exceptional divisor for the desingularization $\pi: S \longrightarrow T \cap \mathcal{N}$ is exactly the Cartan matrix asserted by Theorem (2.2).

Remark: Another way of proving that any two different components have intersection index at most one was suggested by A. Joseph: if $\alpha \neq \beta$ then either $\langle \alpha^{\vee}, \beta \rangle$ or $\langle \beta^{\vee}, \alpha \rangle$ is not greater than 1 and so for components C of type α^{\vee} and C' of type β^{\vee} one has $(C, C')_S \leq (C, D_{\beta})_X = \langle \alpha^{\vee}, \beta \rangle \leq 1$ up to exchange of α and β .

To accomplish the proof of Theorem (2.2) we proceed as in [S1]: $T \cap \mathcal{N}$ is normal in x by loc. cit., Lemma (2.2). Since the intersection matrix of the components

of the exceptional divisor is Cartan matrix of type A, B or E, x is a rational double point of that type (cf. [B1]).

Note that we obtain as a by-product of the calculation made that there is a unique subregular orbit. In fact, the fiber $\pi^{-1}(x)$ in any subregular point $x \in \mathfrak{g}$ contains the components of all possible types. This means that the orbit ${}^{G}x$ is dense in \mathfrak{m}_{α} for any simple root α . Thus any two subregular orbits should coincide.

References

- [B1] E. Brieskorn, Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. 166 (1966), 76-102.
- [B2] E. Brieskorn, Singular elements of semi-simple algebraic groups, Actes Congrès Intern. Math., Nice 2 (1970), 279–284.
- [EGA] A. Grothendieck and J. Dieudonne, EGA.
 - [K] B. Kostant, Lie group representations on polynomial rings, Am. J. Math. 85 (1963), 327-404.
 - [R] R. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), 21-24.
 - [SI] P. Slodowy, Simple singularities and simple algebraic groups, Springer Lecture Notes in Math. 815(1980).
 - [Spa] N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1976), 203-204.
 - [Sp] T. Springer, The unipotent variety of a semisimple group, Proc. Colloq. Alg. Geom. Tata Institute (1969), 373-391.
 - [St] R. Steinberg, Conjugacy classes in algebraic groups, Springer Lecture Notes in Math. 366(1974).