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A B S T R A C T  

A cohomologicai proof of Brieskorn's theorem describing the singularity of 
the nilpotent cone of a complex simple Lie algebra in a subregular point, 
is given. 

1. I n t r o d u c t i o n  

Let G be a complex simple algebraic group with the Lie algebra g. Let A f denote 

the nilpotent cone of 0. 

It is well-known that A/" admits an open G-orbit (greg (the regular nilpotent 

orbit of g) and that the complement A/" - Oreg has codimension two in A f. An 

element x E A/" is called s u b r e g u l a r  if it generates an orbit of codimension two in 

.A/'. The orbit of a subregular element is also called subregular. The singularity of 

A/" in a subregular point is essentially two-dimensional. The result of E. Brieskorn 

(cf. [B2]) claims that this singularity is a rational double point whose Dynkin 

graph coincides with that of the Lie algebra g when the latter is of type An, Dn 

or Es-Es. 

In his original proof [B2] Brieskorn calculates the equations which give singu- 

larities in subregular points and compares them with the known equations for 

rational double points. Slodowy in [S1] reproves the result differently. 

First of all, Slodowy proves that the nilpotent cone is normal in subregular 

points. (The result is due to Kostant, see [K], Th. 0.8.) After that,  a cohomo- 

logical calculation (apparently due to P. Detigne) shows that all self-intersection 
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indices of the components of the exceptional divisor for a resolution of the singu- 

larity, are always equal to -2 .  Finally, the intersections of different components 

of the exceptional divisor are determined using a theorem of Tits (cf. [St], pp. 

147-148). 

In this note we calculate the intersection indices by purely cohomological meth- 

ods. This gives a more conceptual explanation of the coincidence of Cartan ma- 

trices describing simple Lie algebras and their subregular singularities. Moreover, 

our calculation provides a proof of Tits' theorem foe. t i t  which needs no case- 

by-case analysis. As a by-product we obtain that subregular orbits are unique 

(see [St], Wh.1, p. 145). 

We wish to thank A. Joseph and V. Berkovich for their helpful comments and 

suggestions. 

2. D e s i n g u l a r i z a t i o n s  

It is pleasant to be able to start 

with a nice desingularization 

[St], p. 129 

In (2.1) we describe a desingularization of the nilpotent cone iV" due to T. Sprin- 

ger, [Sp]. An appropriate base change (cf. (2.2)) gives a desin~darization for the 

rational double point in question. All the constructions here are well-known (see 

[Sl]). 

We shall equally use the notations gz = z g-1 for the result of the adjoint action 

o f g E G o n z 6 g  

(2.1) Fix a Borel subgroup B C_ G, denote by b the corresponding Bore1 sub- 

algebra of 9 and let n be its nilradical. The tangent space to the flag variety 

G / B  in a point gB identifies with 9 /~b and so the corresponding cotangent 

space identifies with gn. Let X = T*(G/B)  be the cotangent bundle of G/B.  

This can be considered as a sub-bundle of the trivial bundle G / B x  9 and so the 

composition 

~ : X -* G/B x g ~ I~ 

is defined. Its image coincides with U 9n = A/'. 

THEOREM ([Sp]): The map ~r : X --~ J~f constructed above is a desingularization. 
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(2.2) Let now x E A/" be a subregular element and let T C_ g be a transverse 

slice for g in z. Then T N A r is two-dimensional having an isolated singularity in 

x and we choose T so that x is the only point of T N N" not belonging to O,eg. 

The scheme-theoretic inverse image S = Ir -1 (T) C_ X is a desingularization for 

T n N ' .  

We are now able to formulate Brieskorn's theorem in a more general form 

proposed by P. Slodowy (cf. [Sl], 6.4). 

THEOREM: The surface TNJV" has a rational double point in z. If the Lie algebra 

g has a homogeneous Dynkin graph then the singularity ha z is described by the 

same graph. For the non-homogeneous case the correspondence is described by 

the table below. 

Type of g Singularity 

B .  A2.-1 

C,, D.+ I 

F4 Ee 

G2 D4 

3. S u b r e g u l a r  E l e m e n t s  in n 

We fix a nilpotent element x E A/" and recall that the fixed point variety of x is 

defined as 

/3= = {gBIz u 6 .}.  

Consider the following diagram 

G ~ G /B  

Gx 

with p(g) = gB, q(g) = zg. 

One has p- l (Bx)  = q - l ( a z  M n). It is easy to see that qp-1 and pq-1 es- 

tablish a one-to-one correspondence ( S p a l t e n s t e i n  c o r r e s p o n d e n c e )  between 
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irreducible components of ° x  N n and A , ( =  Stabo(x)/Stab~(x))-orbits on the 

set of irreducible components of Bx - -  see [Spa]. 

Let now x be subregular. Then the components of a x n  n have dimension 

d imB,  + d imB - dim S tabaz  = d i m n +  dimBx - 2 = dimn - 1. 

These components are all B-stable by the construction and it is wen-known that 

n admits a dense B-orbit - -  this is the set Oreg n n of regular elements in a. So 

the only candidates for the role of the components of axNrt are (open subsets of) 

the nilraAicals me" of the minimal parabolic subalgebras pc'. On the other hand, 

Richardson's theorem [R], Prop.4, claims that ame" is a closed irreducible subset 

of codimension two in A f, and so it admits an open orbit of the same dimension. 

Thus all me" appear eventually as the closures of components of a x n n  with some 

subregular element x. A subregular orbit Gx which is dense in a fixed me, is 

obviously unique. 

We shall need the following lemma which is a simple part of Tits '  result [St], 

pp. 147-148. 

LEMMA: (a) Every irreducible component of Bx has a form gPe'/B for some 

g E G and a simple root a. 

(b) Different components of Bx corresponding to the same simple root a do not 

meet; those corresponding to different simple roots either don't meet or mee$ 

transversaUy in one point. 

Proof: (a) Let C be a component of B~ and let me" n a x be the component of 

n n a x  corresponding to C. Since rae 'nax is P~-invariant, its pre-image q- l (me 'n  a 

x) C_ G is invariant under the right action of P~. Thus the same is true for 

C C_ G / B  and, since C is one-dimensional, the only possibility for C is to be the 

image of gPe'. 

(b) The first part of the claim immediately follows from (a). If two compo- 

nents gPe'/B, hP~/B (a # fl) meet in a point, one can suppose without loss of 

generality that g = h = 1 and that the intersection point is 1 • B. This is the 

only intersection point since Pc" N P~ = B and the curves meet transversally since 

their tangent spaces are different. 

The lemma is proven. I 
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4. P r o j e c t i v e  Lines  on  a Var ie ty  
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(4.1) TYPE OF A LINE. Let X be a complex algebraic variety. We call a 

p r o j e c t i v e  l ine o n  X a closed embedding i : F 1 ~ X.  The type of the 

projective line is defined as follows. 

Consider the induced homorphism of cohomology algebras 

i':H'(X,Z) , H ( r l , Z ) .  

The cohomology of the projective line is well-known: one has H ' (P1 ,Z)  

= Z[xl/(x 2) where x has des ee 9 and it is the class of the linear bundle O(1). 

So the ring homomorphism i* defines (and is uniquely defined by) a Z-homomor- 

phism H2(X, Z) ~ Z. 

Def;nltion: The t y p e  of i : p1 , X is the element of H 2 (X, Z)* defined above. 

(4.2) INTERSECTION WITH DIVISORS. Let now X be non-singular and let D 

be a divisor on X. Suppose as in (4.1) we are given a curve i : F 1 ~ X. The 

intersection index (i, D)x can be defined as the degree of the invertible sheaf 

i*(£,(D)) on F 1. In other words, if we denote by el(D) the cohomology class of 

the divisor D (or, equivalently, of the invertible sheaf L(D)) in Hz(x,  7.), then 

we have an obvious formula 

(i, D)x = ( type (i), el (D)) 

where ( , ) is the canonical pairing. 

(4.3) A CALCULATION FOR THE FLAG VARIETY. Let now X = G/B be a flag 

variety. Fix a simple root a 6 A and consider the line i= : P~,/B , G/B. Recall 
that H2(G/B, Z) = b~. in order that  the class of a linear bundle £x  corresponding 

to the character e x : B ~ C* is exactly A. 

LEMMA: The type of ia is - a  v 6 Oz. 

Proof." The category of G-linear bundles over G/B is equivalent to the category 

of one-dimensional B-modules. The inverse image functor from the category of 

linear bundles over G/B to the category of linear bundles over p1 = SL2/B2 
(B2 being the corresponding Borel) is expressed in these terms as the forgetful 

functor from the category of B-modules to that  of B2-modules. In other words, 

the inverse image functor takes a character A 6 I)~ to its restriction A [c,,v. Recall 
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that the line bundle over SL2/B2 corresponding to a character A : Ca v , C, 

is isomorphic to O(n) where n = - ( a  v, A} which proves exactly what we need. 

| 

5. C a r t a n  M a t r i x  in H'(T*(G/B)) 

(5.1).  We use here the notations of Sections 2-4. So, S = ~r-l(T) is a desin- 

gularization of T N A/" and 7r-l(x) is the corresponding exceptional divisor. The 

natural projection v : X = T*(G/B) --~ G/B  identifies the exceptional divisor 

with the fixed point variety B~. 

(5.2). Consider the following set of divisors D~ in X = T*(G/B) indexed by 

the simple roots of g with respect to b: 

Da = G x B m~ C_ G x s . = T*(G/B). 

Note that £(Da) = v*£a and so the following result immediately follows from 

Lemma (4.3). 

PROPOSITION: Let C be a component of~r-l(x) corresponding to a simple root 

(see Section 3). Then (C, D~)x = _(av,/~).  

We wish to deduce from this the intersection matrix of the components of the 

exceptional divisor. 

(5.3). The connection between the two Cartan matrices results from the fol- 

lowing 

LEMMA: Let j : S ~ X be the embedding map. Then j*(Da) is the sum of 

the components of ~r-l(x) corresponding to a. 

Proof." Note that  (as a set of closed points) UD~ = ~r-l(A/" - Oreg). Thus 

(UD~) n S = ~r-' ((.Af - O~s) n T) = ~r- l (x).  

So 
n S = n 7r-l(z). 

The image of the latter in G/B is exactly {gB I x0 E m,~}. 

Thus it is clear at least that j*(Da) = ~;]~niCi,ni >_ 1, the sum being taken 

over the components corresponding to a. 
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To prove that  ni = 1 we shall reproduce the calculation of [S1] which shows 

that (C, C)s = - 2  for any component C. Here it is. 

One knows that  (C, C)s = degv(Ncls) where No/s  denotes the normal bun- 

dle of C in S. Since S = ~r-l(T) one has by [EGA] IV 17.13.2 that Ns/x  = 

(~rls)*NT/~ which is trivial for a sufficiently small T. So (C, C)s  = degc(Nc/x) .  
The embedding i : C * X induces a short exact sequence 

0 ---* Tc , i*Tx ' NClX ,0 

To (resp. Tx) being the tangent bundle of C (resp. X). Since the tangent 

bundle of X is trivial, one obtains finally (C, C)s = - deg(To) = -2 .  

Finally, by Lemma 3 different components C, C'  corresponding to the same 

simple root a do not meet. So, using Proposition (5.2) for a component Ci 

corresponding to the simple root a, one has - 2  = (Ci, D~)x = ni(Ci, Ci)s = 

--2ni so ni = 1 as was claimed. II 

6. F ina l  

Proposition (5.2) and Lemma (5.3) determine the intersection matrix of the ex- 

ceptional divisor. In fact, Lemma 3 asserts that any two different components 

have intersection index at most one and then by Section 5 any component of type 

a v (note: the standard name for such a component is t he  line o f  t y p e  al) meets 

exactly (a v,/3) components of type/3v. Take any component of the exceptional 

divisor, say, of type a v. We see that for any simple root/3 not orthogonal to a the 

exceptional divisor contains also components of type fly. Thus the exceptional 

divisor contains the components corresponding to all simple roots. This proves 

that the intersection matrix of the exceptional divisor for the desingularization 

~r : S ~ T N AZ is exactly the Cartan matrix asserted by Theorem (2.2). 

Remark: Another way of proving that any two different components have in- 

tersection index at most one was suggested by A. Joseph: if a # / 3  then either 

(a v,/3 / or (/3v, a) is not greater than 1 and so for components C of type ¢rv and 

C' of type flv one has (C, C')s <_ (C, D#)x = (a v, fl) _< 1 up to exchange of a 

and/3. | 

To accomplish the proof of Theorem (2.2) we proceed as in IS1]: TNA f is normal 

in z by Ioc. cir., Lemma (2.2). Since the intersection matrix of the components 
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of the exceptional divisor is Caftan matrix of type A, B or E, x is a rational 

double point of that type (cf. [B1]). 

Note that we obtain as a by-product of the calculation made that there is a 

unique subregular orbit. In fact, the fiber 7r-l(x) in any subregular point z E g 

contains the components of all possible types. This means that  the orbit Gz 

is dense in ma for any simple root a. Thus any two subregular orbits should 

coincide. 
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